Lesson No. 16
Display Memory

The debugger gives a very close vision of the processor. That is why every program written till now was executed inside the debugger. Also the debugger is a very useful tool in assembly language program development, since many bugs only become visible when each instruction is independently monitored the way the debugger allows us to do. We will now be using the display screen in character mode, the way DOS uses this screen. The way we will access this screen is specific to the IBM PC.

1.1. ASCII Codes

The computer listens, sees, and speaks in numbers. Even a character is a number inside the computer. For example the keyboard is labeled with characters however when we press ‘A’, a specific number is transferred from the keyboard to the computer. Our program interprets that number as the character ‘A’. When the same number comes on display, the Video Graphics Adapter (VGA) in our computer shows the shape of ‘A’. Even the shape is stored in binary numbers with a one bit representing a pixel on the screen that is turned on and a zero bit representing a pixel that is not glowing. This example is considering a white on black display and no colors. This is the way a shape is drawn on the screen. The interpretation of ‘A’ is performed by the VGA card, while the monitor or CRT (cathode ray tube) only glows the pixels on and turns them off. The keyboard has a key labeled ‘A’ and pressing it the screen shows ‘A’ but all that happened inside was in numbers.

An ‘A’ on any computer and any operating system is an ‘A’ on every other computer and operating system. This is because a standard numeric representation of all commonly used characters has been developed. This is called the ASCII code, where ASCII stands for American Standard Code for Information Interchange. The name depicts that this is a code that allows the interchange of information; ‘A’ written on one computer will remain an ‘A’ on another. The ASCII table lists all defined characters and symbols and their standardized numbers. All ASCII based computers use the same code. There are few other standards like EBCDIC and gray codes, but ASCII has become the most prevalent standard and is used for Internet communication as well. It has become the de facto standard for global communication. The character mode displays of our computer use the ASCII standard. Some newer operating systems use a new standard Unicode but it is not relevant to us in the current discussion.

Standard ASCII has 128 characters with assigned numbers from 0 to 127. When IBM PC was introduced, they extended the standard ASCII and defined 128 more characters. Thus extending the total number of symbols from 128 to 256 numbered from 0 to 255 fitting in an 8-bit byte. The newer characters were used for line drawing, window corners, and some non-English characters. The need for these characters was never felt on teletype terminals, but with the advent of IBM PC and its full screen display, these semi-graphics characters were the need of the day. Keep in mind that at that time there was no graphics mode available.

The extended ASCII code is just a de facto industry standard but it is not defined by an organization like the standard ASCII. Printers, displays, and all other peripherals related to the IBM PC understand the ASCII code. If the code for ‘A’ is sent to the printer, the printer will print the shape of ‘A’, if it is sent to the display, the VGA card will form the shape of ‘A’ on the CRT. If it is sent to another computer via the serial port, the other computer will understand that this is an ‘A’.

The important thing to observe in the ASCII table is the contiguous arrangement of the uppercase alphabets (41-5A), the lowercase alphabets (61-7A), and the numbers (30-39). This helps in certain operations with ASCII, for example converting the case of characters by adding or subtracting 0x20 from it. It also helps in converting a digit into its ASCII representation by adding 0x30 to it.

1.2. Display Memory Formation

We will explore the working of the display with ASCII codes, since it is our immediately accessible hardware. When 0x40 is sent to the VGA card, it will turn pixels on and off in such a way that a visual representation of ‘A’ appears on the screen. It has no reality, just an interpretation. In later chapters we will program the VGA controller to display a new shape when the ASCII of ‘A’ is received by it.

The video device is seen by the computer as a memory area containing the ASCII codes that are currently displayed on the screen and a set of I/O ports controlling things like the resolution, the cursor height, and the cursor position. The VGA memory is seen by the computer just like its own memory. There is no difference; rather the computer doesn’t differentiate, as it is accessible on the same bus as the system memory. Therefore if that appropriate block of the screen is cleared, the screen will be cleared. If the ASCII of ‘A’ is placed somewhere in that block, the shape of ‘A’ will appear on the screen at a corresponding place.

This correspondence must be defined as the memory is a single dimensional space while the screen is two dimensional having 80 rows and 25 columns. The memory is linearly mapped on this two dimensional space, just like a two dimensional is mapped in linear memory. There is one word per character in which a byte is needed for the ASCII code and the other byte is used for the character’s attributes discussed later. Now the first 80 words will correspond to the first row of the screen and the next 80 words will correspond to the next row. By making the memory on the video controller accessible to the processor via the system bus, the processor is now in control of what is displayed on the screen.

The three important things that we discussed are.

· One screen location corresponds to a word in the video memory

· The video controller memory is accessible to the processor like its own memory.

· ASCII code of a character placed at a cell in the VGA memory will cause the corresponding ASCII shape to be displayed on the corresponding screen location.

Display Memory Base Address

The memory at which the video controller’s memory is mapped must be a standard, so that the program can be written in a video card independent manner. Otherwise if different vendors map their video memory at different places in the address space, as was the problem in the start, writing software was a headache. BIOS vendors had a problem of dealing with various card vendors. The IBM PC text mode color display is now fixed so that system software can work uniformly. It was fixed at the physical memory location of B8000. The first byte at this location contains the ASCII for the character displayed at the top left of the video screen. Dropping the zero we can load the rest in a segment register to access the video memory. If we do something in this memory, the effect can be seen on the screen. For example we can write a virus that makes any character we write drop to the bottom of the screen.

Attribute Byte

The second byte in the word designated for one screen location holds the foreground and background colors for the character. This is called its video attribute. So the pair of the ASCII code in one byte and the attribute in the second byte makes the word that corresponds to one location on the screen. The lower address contains the code while the higher one contains the attribute. The attribute byte as detailed below has the RGB for the foreground and the background. It has an intensity bit for the foreground color as well thus making 16 possible colors of the foreground and 8 possible colors for the background. When bit 7 is set the character keeps on blinking on the screen. This bit has some more interpretations like background intensity that has to be activated in the video controller through its I/O ports.

[image: image1]
7 – Blinking of foreground character

6 – Red component of background color

5 – Green component of background color

4 – Blue component of background color

3 – Intensity component of foreground color

2 – Red component of foreground color

1 – Green component of foreground color

0 – Blue component of foreground color

Display Examples

Both DS and ES can be used to access the video memory. However we commonly keep DS for accessing our data, and load ES with the segment of video memory. Loading a segment register with an immediate operand is not allowed in the 8088 architecture. We therefore load the segment register via a general purpose register. Other methods are loading from a memory location and a combination of push and pop.

mov ax, 0xb800
mov es, ax

This operation has opened a window to the video memory. Now the following instruction will print an ‘A’ on the top left of the screen in white color on black background.

mov word [es:0], 0x0741

The segment override is used since ES is pointing to the video memory. Since the first word is written to, the character will appear at the top left of the screen. The 41 that goes in the lower byte is the ASCII code for ‘A’. The 07 that goes in the higher byte is the attribute with I=0, R=1, G=1, B=1 for the foreground, meaning white color in low intensity and R=0, G=0, B=0 for the background meaning black color and the most significant bit cleared so that there is no blinking. Now consider the following instruction.

mov word [es:160], 0x1230

This is displayed 80 words after the start and there are 80 characters in one screen row. Therefore this is displayed on the first column of the second line. The ASCII code used is 30, which represents a ‘0’ while the attribute byte is 12 meaning green color on black background.

We take our first example to clear the screen.

	
	Example 6.1

	01

02

03

04

05

06

07

08

09

10

11

12

13
	; clear the screen

[org 0x0100]

 mov ax, 0xb800 ; load video base in ax

 mov es, ax ; point es to video base

 mov di, 0 ; point di to top left column

nextchar: mov word [es:di], 0x0720 ; clear next char on screen

 add di, 2 ; move to next screen location

 cmp di, 4000 ; has the whole screen cleared

 jne nextchar ; if no clear next position

 mov ax, 0x4c00 ; terminate program

 int 0x21

	07

08

09
	The code for space is 20 while 07 is the normal attribute of low intensity white on black with no blinking. Even to clear the screen or put a blank on a location there is a numeric code.

DI is incremented twice since each screen location corresponds to two byte in video memory.

DI is compared with 80*25*2=4000. The last word location that corresponds to the screen is 3998.

Inside the debugger the operation of clearing the screen cannot be observed since the debugger overwrites whatever is displayed on the screen. Directly executing the COM file from the command prompt
, we can see that the screen is cleared. The command prompt that reappeared is printed after the termination of our application. This is the first application that can be directly executed to see some output on the screen.

7

5

4

3

2

1

0

6

� Remember that if this example is run in a DOS window on some newer operating systems, a full screen DOS application (for example Dos editor) must be run before this program so that screen access is enabled.

